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Abstract. We propose a method for treating the Dirichlet boundary condi-
tions in the framework of the Generalized Finite Element Method (GFEM).

We are especially interested in boundary data with low regularity (possibly

a distribution). We use approximate Dirichlet boundary conditions as in [11]
and polynomial approximations of the boundary. Our sequence of GFEM-

spaces considered, Sµ, µ = 1, 2, . . . is such that Sµ 6⊂ H1
0 (Ω), and hence it

does not conform to one of the basic FEM conditions. Let hµ be the typi-
cal size of the elements defining Sµ and let u ∈ Hm+1(Ω) be the solution of

the Poisson problem −∆u = f in Ω, u = 0 on ∂Ω, on a smooth, bounded

domain Ω. Assume that ‖vµ‖H1/2(∂Ω) ≤ Chm
µ ‖vµ‖H1(Ω) for all vµ ∈ Sµ

and |u − uI |H1(Ω) ≤ Chm
µ ‖u‖Hm+1(Ω), u ∈ Hm+1(Ω) ∩ H1

0 (Ω), for a suit-

able uI ∈ Sµ. Then we prove that we obtain quasi-optimal rates of con-
vergence for the sequence uµ ∈ Sµ of GFEM approximations of u, that is,

‖u − uµ‖H1(Ω) ≤ Chm
µ ‖f‖Hm−1(Ω). We also extend our results to the inho-

mogeneous Dirichlet boundary value problem −∆u = f in Ω, u = g on ∂Ω,

including the case when f = 0 and g has low regularity (i.e., is a distribu-
tion). Finally, we indicate an effective technique for constructing sequences

of GFEM-spaces satisfying our conditions using polynomial approximations of
the boundary.
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Introduction

In the past few years, meshless methods for the approximation of solutions of
partial differential equations have received increasing attention, especially in the
Engineering and Physics communities. The reasons behind the development of
such methods are the difficulties associated to the mesh generation, particularly
when the geometry of the domain is complicated. As in the case of the usual Finite
Element Method, one of the major problems in the implementation of meshless
methods is the enforcement of Dirichlet boundary conditions. It is the purpose of
this paper to address the problem of enforcing Dirichlet boundary conditions in the
Generalized Finite Element Method framework. We are especially interested in the
case when the Dirichlet boundary data has low regularity, including the case when
it is a distribution on the boundary.

The classical Rayleigh-Ritz methods for elliptic Dirichlet boundary value prob-
lems assume that the trial subspace functions fulfill the boundary conditions. Nev-
ertheless, the construction of such subspaces implies many difficulties in practice
when the boundary of the domain is curved. Therefore, several approaches are
known for dealing with the Dirichlet boundary conditions on domains with curved
boundaries. One approach is to modify the variational principles by adding ap-
propriate boundary terms so that there will be no need for the trial subspaces to
fulfill any condition at the boundary. See the works of Babuška [2, 4], Bramble and
Nitsche [12], and Bramble and Schatz [13, 14], among others, for examples of how
this approach works in practice. Another approach (used also in this paper) is to
use subspaces with nearly zero boundary conditions. This ideea was first outlined
by Nitsche [27] and further studied by Berger, Scott, and Strang [11] and Nitsche
[28].

Yet another approach is the Isoparametric Finite Element Method or IFEM with
curved finite elements along the boundary. See [18] and references therein, or [17],
[19, 21, 23, 24, 32, 33], among many others, for more recent work and applications.
This approach is typically used in connection with a numerical quadrature scheme
computing the coefficients of the resulting linear systems. In the applications of this
method, except in special cases (such as when Ω is a polyhedral domain) the interior
Ωh of the union of the finite elements is not equal to Ω, although the boundary of
Ωh is very close to ∂Ω. That is, the approximate solution uh is sought in a subspace
Vh ⊂ H1

0 (Ωh) and so, the homogeneous Dirichlet boundary condition u = 0 on ∂Ω
is “approximated” by the boundary condition uh = 0 on ∂Ωh. In fact, uh is the
solution of a variational equation ah(uh, vh) = (fh, vh)h for all vh ∈ Vh, where
ah(·, ·) is a bilinear form which approximates the usual bilinear form defined over
H1(Ωh)×H1(Ωh), and fh ∈ V ∗

h approximates the linear form vh ∈ Vh →
∫
Ωh
f̃vhdx,

where f̃ is an extension of f to the set Ωh.
Our approach has certain points in common with the isoparametric method just

mentioned in the fact that we are using polynomial approximations of the boundary.
However, our method does not require non-linear changes of coordinates. Our
method combines the approaches in the papers of Berger, Scott, and Strang [11]
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and Nitsche [28]. Our definition of the discrete solution is as in [11], whereas our
assumptions are closer to those of [28]. We have tried to keep our assumptions at a
minimum. This is possible using partitions of unity, more precisely the Generalized
Finite Element Method or GFEM, a method that originated in the work of Babuška,
Caloz, and Osborn [6] and further developed in [4, 7, 8, 10, 22, 25, 26, 34].

Our construction is different from the IFEM in that we do not require compli-
cated non-linear changes of coordinates. Moreover, our method uses non-conforming
subspaces of functions and it does not have to deal with extensions over larger do-
mains. It is closely related to [9] which uses GFEM for elliptic Neumann boundary
value problems with distributional boundary data. The GFEM is a generalization
of the meshless methods which use the idea of partition of unity. This method
allows a great flexibility in constructing the trial spaces, permits inclusion of a
priori knowledge about the differential equation in the trial spaces, and gives the
option of constructing trial spaces of any desired regularity. We mention that the
GFEM is also known and used under other names, such as: the method of “clouds,”
the method of “finite spheres,” the “X–finite element method,” and others. See the
survey by Babuška, Banerjee, and Osborn [4] for further information and references.

Let us now describe the main results of this paper in some detail. Let Ω ⊂ Rn

be a smooth, bounded domain with boundary ∂Ω. Let f ∈ H−1(Ω) and u ∈ H1(Ω)
be the unique solution of the Poisson problem

(1) −∆u = f on Ω, u = 0 on ∂Ω.

(For most of our results, we shall assume that f ∈ Hp−1(Ω) with p ≥ 1.)
Assume that we are given a sequence hµ → 0 and a sequence Sµ ⊂ H1(Ω) of test-

trial spaces. The parameters hµ play the role of the size of the elements defining
Sµ. We define the discrete solution uµ ∈ Sµ in the usual way: B(uµ, vµ) = (f, vµ)
for all vµ ∈ Sµ, where B(u, v) := 〈∇u,∇v〉L2(Ω) (see Equation (3) below). We do
not assume Sµ to satisfy exactly the Dirichlet boundary conditions, that is, we do
not assume Sµ ⊂ H1

0 (Ω).
Let us fix from now on a natural number m ∈ N = {1, 2, . . .} that will play, in

what follows, the role of the expected order of approximation. We shall make the
following two basic assumptions. The first assumption is that our approximating
functions satisfy Dirichlet boundary conditions approximately:

• Assumption 1, nearly zero boundary values: ‖vµ‖H1/2(∂Ω) ≤ Chm
µ ‖vµ‖H1(Ω)

for any vµ ∈ Sµ.
The second assumption is an approximation assumption that will be used also for

non-homogeneous boundary conditions. For that purpose, let us consider a second
sequence of subspaces S̃µ ⊂ H1(Ω), Sµ ⊂ S̃µ, which are not required to satisfy any
boundary conditions.

• Assumption 2, approximability: for any u ∈ Hj+1(Ω), 0 ≤ j ≤ m, then
there exists uI ∈ S̃µ such that |u− uI |H1(Ω) ≤ Chj

µ‖u‖Hj+1(Ω). If u = 0 on
∂Ω, then we can take uI ∈ Sµ.

These two assumptions are formulated in more detail in Section 1.
Our paper is divided into two parts. In the first part, consisting of the first

four sections, we prove some general approximation results for the Poisson problem
with Dirichlet boundary conditions. The approximations (or discrete solutions) be-
long to some abstract spaces Sµ (for zero boundary conditions) or S̃µ (for general
boundary conditions) that are required to satisfy certain reasonable assumptions
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(Assumptions 1 and 2, for zero Dirichlet boundary conditions, and Assumptions 1,
2, and 3 for non-zero boundary conditions). In the second part of the paper we
provide examples of Generalized Finite Element Spaces satisfying these assump-
tions. Under Assumptions 1 and 2, our main approximation result in Section 1 is
the following.

Theorem 0.1. Let Sµ ⊂ H1(Ω) be a sequence of finite dimensional subspaces
satisfying Assumptions 1 and 2 for a sequence hµ → 0 and 0 ≤ p ≤ m. Then
the (unique) solutions u and uµ of Equations (1) and (3), respectively, with f ∈
Hp−1(Ω) satisfy

‖u− uµ‖H1(Ω) ≤ Chp
µ‖u‖Hp+1(Ω) ≤ Chp

µ‖f‖Hp−1(Ω),

for constants independent of µ and f ∈ Hp−1(Ω).

In Section 2 we extend our results to the non-homogeneous Dirichlet boundary
conditions case u = g on ∂Ω, with g ∈ Hm+1/2(∂Ω). In essence, we will be looking
for a sequence Gk of approximate extensions of g, that is, a sequence of elements of
Hm+1(Ω) subject to the following assumption. Recall that the sequence hµ should
be thought of as the “typical size” of the elements defining Sµ and satisfies hµ → 0.

• Assumption 3, approximate extensions: There exists a constant C > 0
such that, for any g ∈ Hm+1/2(∂Ω), there exists a sequence Gk ∈ S̃k

such that ‖Gk|∂Ω − g‖H1/2(∂Ω) ≤ Chm
k ‖g‖Hm+1/2(∂Ω) and ‖Gk‖Hm+1(Ω) ≤

C‖g‖Hm+1/2(∂Ω).
Let wk be the exact solution of −∆wk = f + ∆Gk in Ω, wk = 0 on ∂Ω. Also,

let (wk)µ ∈ Sµ be the discrete solution of this equation, namely, the solution of the
discrete variational problem

(2) B((wk)µ, v) = 〈f + ∆Gk, v〉L2(Ω), v ∈ Sµ,

where f ∈ Hm−1(Ω) is the data of Equation (13). The result we prove in Section 2
is the following.

Theorem 0.2. Suppose Assumptions 1, 2, and 3 are satisfied. Let uk := (wk)k +
Gk. Then there exists a constant C > 0 such that the solution u ∈ Hm+1(Ω) of
Equation (13) satisfies

‖u− uk‖H1(Ω) ≤ Chm
k

(
‖f‖Hm−1(Ω) + ‖g‖Hm+1/2(∂Ω)

)
.

In order to deal with low regularity boundary data, in Section 3 we consider
the Dirichlet problem −∆u = f in Ω, u = g on ∂Ω, with g ∈ H1/2−s(∂Ω) and
f ∈ H−1−s(Ω), s > 0. Thus both f and g may be distributions. We say that u =
(u0, u1) ∈ H̃1−s(Ω) := H1−s(Ω) ⊕H−1/2−s(∂Ω) is a weak solution of the problem
−∆u = f in Ω, u = g on the boundary ∂Ω if B̃(u, v) = −〈f, v〉Ω + 〈g, ∂νv〉∂Ω, for
all v ∈ H1+s(Ω). Then, the result of Section 3 is the following.

Theorem 0.3. Let g ∈ H1/2−s(∂Ω) and f ∈ H−1−s(Ω). Then there exists a unique
weak solution u = (u0, u1) ∈ H̃1−s(Ω) for the problem −∆u = f in Ω, u = g on
the boundary ∂Ω and this solution satisfies

‖u0‖H1−s(Ω) + ‖u1‖H−1/2−s(∂Ω) ≤ CΩ,s(‖g‖H1/2−s(∂Ω) + ‖f‖H−1−s(Ω)),

for a constant CΩ,s that depends only on Ω and s.
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The second part of this paper is dedicated to constructing concrete examples of
Generalized Finite Element Spaces Sµ and S̃µ satisfying the Assumptions 1, 2, and
3 of the first part. In fact, we will prove that these assumptions are easy to fulfill
with a “flat-top” partition of unity and polynomial local approximation spaces. The
exact conditions are formulated in Section 4. The proof that the resulting GFEM
spaces satisfy the Assumptions 1, 2, and 3 is in Section 5. In addition, in Section 6
we also prove interior estimates for the error u − uk, where u is the solution of
the distributional boundary value problem −∆u = 0 in Ω, u = g on ∂Ω, with
distributional data g ∈ H1/2−s(∂Ω), s > 0, and uk ∈ S̃k is the discrete solution in
our GFEM spaces. The last section contains some comments and a discussion of
some further problems.

In this paper, we shall use the convention that C > 0 indicates a generic constant,
independent of µ, which may be different each time when used, but is independent
of the free variables of the formulas.

Part 1. Approximate Dirichlet boundary conditions

1. Homogeneous boundary conditions

In this section, we give a proof of Theorem 0.1. We begin by fixing the notation
and then we prove some preliminary results. In particular, f ∈ H−1(Ω) and u ∈
H1

0 (Ω) is the solution of the Poisson problem (1).
Recall that Ω ⊂ Rn is a smooth, bounded domain, fixed throughout this paper.

We shall fix in what follows m ∈ N = {1, 2, . . .}, which will play the role of the
order of approximation. We want to approximate u with functions uµ ∈ Sµ, µ ∈ N,
where Sµ ⊂ H1(Ω) is a sequence of finite dimensional subspaces that satisfy the
Assumption 1 and 2 formulated next. In those assumptions, the sequence hµ → 0
should be thought of as the “typical size” of the elements defining Sµ. Our first
assumption is:

• Assumption 1 (nearly zero boundary values). There exists C > 0
such that

‖vµ‖H1/2(∂Ω) ≤ Chm
µ ‖vµ‖H1(Ω) for any vµ ∈ Sµ.

So Sµ does not necessarily consist of functions satisfying the Dirichlet bound-
ary conditions. Let |u|H1(Ω) := [

∫
Ω
|∇u|2dx]1/2. Our second assumption will also

be used for non-homogeneous boundary conditions, so we formulate it also for a
sequence of spaces S̃µ ⊂ H1(Ω), Sµ ⊂ S̃µ.

• Assumption 2 (approximability): There exists C > 0 such that for any
0 ≤ j ≤ m, any u ∈ Hj+1(Ω), and any µ ∈ N, there exists uI ∈ S̃µ such
that

|u− uI |H1(Ω) ≤ Chj
µ‖u‖Hj+1(Ω).

If u = 0 on ∂Ω, then we can take uI ∈ Sµ.

We now proceed to the proof of Theorem 0.1. We first need some lemmas. We
begin with the following classical result [1, 16].

Lemma 1.1. For v ∈ H1(Ω) there is a constant C that depends only on Ω such
that

‖v‖2
H1(Ω) ≤ C

[
|v|2H1(Ω) + ‖v‖2

L2(∂Ω)

]
.
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From this lemma we obtain that |vµ|H1(Ω) and ‖vµ‖H1(Ω) are equivalent norms
on Sµ, with equivalence bounds independent of µ.

Lemma 1.2. There exists C > 0 such that

C−1|vµ|H1(Ω) ≤ ‖vµ‖H1(Ω) ≤ C|vµ|H1(Ω)

for all µ large enough and all vµ ∈ Sµ.

Proof. From Lemma 1.1, we have

‖vµ‖2
H1(Ω) ≤ C

[
|vµ|2H1(Ω) + ‖vµ‖2

L2(∂Ω)

]
≤ C|vµ|2H1(Ω) + Ch2m

µ ‖vµ‖2
H1(Ω),

where the last inequality is a consequence of Assumption 1. Therefore, for µ large,
hµ is small enough and we get

‖vµ‖H1(Ω) ≤ C(1− Ch2m
µ )−1/2|vµ|H1(Ω)

which is enough to complete the proof. �

Lemma 1.2 allows us now to introduce the discrete solution uµ of Equation (1)
using the standard procedure. Let B(v, w) :=

∫
Ω
∇v · ∇wdx be the usual bilinear

form. For µ large, let us define the discrete solution uµ ∈ Sµ of the Poisson problem
(1) by the usual formula

(3) B(uµ, vµ) =
∫

Ω

f(x)vµ(x)dx, for all vµ ∈ Sµ.

Let ν be the outer unit normal to ∂Ω and dS denote the surface measure on ∂Ω.
Similarly, let wµ ∈ Sµ, for µ large, be the solution of the variational problem

(4) B(wµ, vµ) =
∫

∂Ω

∂νu(x)vµ(x)dS(x), for all vµ ∈ Sµ,

where u is the solution of Equation (1). Note that we need Lemma 1.2 to justify
the existence and uniqueness of the (weak) solutions uµ and wµ.

Lemma 1.3. Let u be the solution of the Poisson problem (1) and let uµ and wµ

be as in Equations (3) and (4). Then B(u−uµ−wµ, vµ) = 0 for all vµ ∈ Sµ; hence

|u− uµ − wµ|H1(Ω) ≤ |u− vµ|H1(Ω) for all vµ ∈ Sµ.

Proof. This is obtained from Assumption 1 as follows

(5) B(u, vµ) =
∫

Ω

∇u · ∇vµdx =
∫

Ω

fvµdx+
∫

∂Ω

(∂νu)vµdS(x) = B(uµ +wµ, vµ),

for all vµ ∈ Sµ. �

We now proceed to estimate uµ and wµ.

Lemma 1.4. Let u be the solution of the Poisson problem (1) and let wµ be the
solution of the weak problem (4). Then, for µ large, we have

(6) ‖wµ‖H1(Ω) ≤ Chm
µ ‖u‖H1(Ω),

with C a constant independent of µ and u.
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Proof. Let us first assume that f ∈ L2(Ω). Then u ∈ H2(Ω) and hence ∂νu is
defined and belongs to H1/2(∂Ω). Green’s formula gives

∫
∂Ω
∂νu(x)w(x)dS(x) =∫

Ω
(∆uw + ∇u · ∇w)dx. Since the map H1(Ω) → H1/2(∂Ω) is surjective with a

continuous splitting, we see that

(7) ‖∂νu‖H−1/2(∂Ω) ≤ C‖u‖H1(Ω).

By continuity, this inequality will continue to hold for f ∈ H−1(Ω).
We have

‖wµ‖2
H1(Ω) ≤ C|wµ|2H1(Ω) = CB(wµ, wµ) = C

∫
∂Ω

∂νu(x)wµ(x)dS(x)

≤ C‖∂νu‖H−1/2(∂Ω)‖wµ‖H1/2(∂Ω) ≤ Chm
µ ‖u‖H1(Ω)‖wµ‖H1(Ω).

Therefore ‖wµ‖H1(Ω) ≤ Chm
µ ‖u‖H1(Ω), as claimed. �

From this lemma we obtain the following.

Lemma 1.5. For µ large, the solution uµ of the weak problem (3) satisfies

(8) ‖uµ‖H1(Ω) ≤ C‖u‖H1(Ω),

with C a constant independent of µ and u.

Proof. Let us first observe that Lemmas 1.2 and 1.3 and Equation (7) give

‖uµ‖2
H1(Ω) ≤ C|uµ|2H1(Ω) = CB(uµ, uµ) = C

[
B(u, uµ)−B(wµ, uµ)

]
= C

[
B(u, uµ)− 〈∂νu, uµ〉∂Ω

]
≤ C

[
|B(u, uµ)|+ |〈∂νu, uµ〉∂Ω|

]
≤ C‖u‖H1(Ω)‖uµ‖H1(Ω) + C‖∂νu‖H−1/2(∂Ω)‖uµ‖H1/2(∂Ω)

≤ C‖u‖H1(Ω)‖uµ‖H1(Ω) + Chm
µ ‖u‖H1(Ω)‖uµ‖H1(Ω).

Now it is easy to see that ‖uµ‖H1(Ω) ≤ C‖u‖H1(Ω), as claimed. �

We are ready now to prove Theorem 0.1.

Proof. We shall assume p = m, for simplicity. The proof in general is exactly the
same. Lemma 1.3 and the projection property, together with Lemma 1.4, give

(9) |u− uµ|H1(Ω) ≤ |u− uµ − wµ|H1(Ω) + |wµ|H1(Ω)

≤ |u− uI |H1(Ω) + Chm
µ ‖u‖H1(Ω) ≤ Chm

µ ‖u‖Hm+1(Ω),

where for the last line we also used the approximation property (Assumption 2).
The estimate in the H1-norm is obtained from Lemma 1.1, Equation (9), As-

sumption 1, and Lemma 1.4 as follows

‖u− uµ‖H1(Ω) ≤ C
[
|u− uµ|H1(Ω) + ‖uµ‖L2(∂Ω)

]
≤ Chm

µ ‖u‖Hm+1(Ω) + Chm
µ ‖uµ‖H1(Ω) ≤ Chm

µ ‖u‖Hm+1(Ω).

The proof is now complete. �

In view of some further applications, we now include an error estimate in a
“negative order” Sobolev norm. We let H−l(Ω) to be the dual of H l(Ω) with pivot
L2(Ω). Since Ω is a smooth domain, H−l(Ω) can also be described as the closure
of C∞(Ω) in the norm

(10) ‖u‖H−l(Ω) = sup
φ6=0

|〈u, φ〉L2(Ω)|
‖φ‖Hl(Ω)
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(Note that, in several other papers, H−l(Ω) denotes the dual of H l
0(Ω).)

Theorem 1.6. Let 0 ≤ l ≤ m, 0 ≤ p ≤ m, and γ = min{l + p + 1,m}. Then,
under the assumptions of Theorem 0.1, the solutions u and uµ of Equation (1) and
Equation (3), respectively, satisfy

‖u− uµ‖H−l(Ω) ≤ Chγ
µ‖u‖Hp+1(Ω) ≤ Chγ

µ‖f‖Hp−1(Ω),

for a constant C > 0 independent of µ and f ∈ Hp−1(Ω).

Proof. The proof of this theorem is an adaptation of the usual Nitsche-Aubin
trick. Indeed, let us denote by F ∈ H l+2(Ω) the unique solution of the equation
−∆F = φ, F = 0 on ∂Ω, for φ ∈ H l(Ω) arbitrary, non-zero. Then there exists
a constant C > O, independent of φ, such that ‖F‖Hl+2(Ω) ≤ C‖φ‖Hl(Ω). By
Assumption 2, there exists FI ∈ Sµ such that

(11) |F − FI |H1(Ω) ≤ Chl+1
µ ‖F‖Hl+2(Ω).

Then, the inequality (11) leads to the following easy observation, which will be used
later,

(12) |FI |H1(Ω) = |F−(F−FI)|H1(Ω) ≤ |F |H1(Ω)+Chl+1
µ ‖F‖Hl+2(Ω) ≤ C‖φ‖Hl(Ω).

In the following calculation, we shall use Equation (5) in the first inequality, and
then Theorem 0.1, Equations (11) and (12), 1.4, and 1.5 for the last inequality, to
obtain

‖u− uµ‖H−l(Ω) = sup
φ6=0

|(u− uµ, φ)L2(Ω)|
‖φ‖Hl(Ω)

= sup
φ6=0

∣∣B(u− uµ, F ) +
∫

∂Ω
uµ∂νFdS

∣∣
‖φ‖Hl(Ω)

≤ sup
φ6=0

|B(u− uµ, F − FI)|
‖φ‖Hl(Ω)

+ sup
φ6=0

|B(wµ, FI)|
‖φ‖Hl(Ω)

+ sup
φ6=0

∣∣ ∫
∂Ω
uµ∂νFdS

∣∣
‖φ‖Hl(Ω)

≤ sup
φ6=0

|u− uµ|H1(Ω)|F − FI |H1(Ω)

‖φ‖Hl(Ω)

+ sup
φ6=0

|wµ|H1(Ω)|FI |H1(Ω)

‖φ‖Hl(Ω)

+ sup
φ6=0

‖uµ‖L2(∂Ω)‖∂νF‖L2(∂Ω)

‖φ‖Hl(Ω)

≤ Chp+l+1
µ ‖u‖Hp+1(Ω) + Chm

µ ‖u‖H1(Ω) + Chm
µ ‖u‖H1(Ω)

≤ Chγ
µ‖u‖Hp+1(Ω),

by the definition of γ. This completes the proof. �

For p = 0, the proof of the above result requires the full strength of Assumption
1. The case p = 0 is the one needed for the results of Section 6.

2. Non-homogeneous boundary conditions

In this subsection we provide an approach to the non-homogeneous Dirichlet
boundary conditions. That is, we consider the boundary value problem

(13)

{
−∆u = f on Ω,
u = g on ∂Ω.

Our approach is to reduce it to the case g = 0 and then to use the results on the
Poisson problem (1). In a purely theoretical framework, this is achieved using an
extension G of g and then solving the problem −∆w = f + ∆G, w = 0 on ∂Ω.
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The solution of (13) will then be u = w+G. This gives that the problem (13) has
a unique solution u ∈ Hp+1(Ω) for any f ∈ Hp−1(Ω) and g ∈ H1/2+p(∂Ω) and it
satisfies

‖u‖Hp+1(Ω) ≤ C
(
‖f‖Hp−1(Ω) + ‖g‖H1/2+p(∂Ω)

)
,

for a constant C > 0 that depends only on Ω and p ∈ Z+. (This result is valid also
for p = 0.)

In practice, however, we need to slightly modify this approach since it is not
practical to construct the extension G (this is especially a problem if g has low
regularity, that is, if g is a distribution, for instance). We will be looking therefore
for a sequence Gk of approximate extensions of g, that is, satisfying the following
assumption. Recall that the sequence hµ should be thought of as the “typical size”
of the elements defining Sµ and satisfies hµ → 0.

Assumption 3 (approximate extensions). We assume that there exist a
sequence of spaces S̃k, Sk ⊂ S̃k, satisfying Assumption 2 and a constant C > 0
such that, for any g ∈ Hm+1/2(∂Ω), there exists a sequence Gk ∈ S̃k such that
‖Gk|∂Ω − g‖H1/2(∂Ω) ≤ Chm

k ‖g‖Hm+1/2(∂Ω) and ‖Gk‖Hm+1(Ω) ≤ C‖g‖Hm+1/2(∂Ω).

The proof of Theorem 0.2 follows below.

Proof. Remember that wk was introduced as the exact solution to the boundary
value problem −∆wk = f + ∆Gk in Ω, wk = 0 on ∂Ω. Let (wk)µ ∈ Sµ be the
approximate solution of this equation, as in Equation (2).

We have that vk := wk +Gk solves the boundary value problem

−∆vk = f on Ω, vk = Gk on ∂Ω.

Hence the difference u − vk solve the boundary value problem ∆(u − vk) = 0,
(u− vk) = g −Gk on ∂Ω. From this and Assumption 3 we obtain

(14) ‖u− vk‖H1(Ω) ≤ C‖g −Gk‖H1/2(∂Ω) ≤ Chm
k ‖g‖Hm+1/2(∂Ω).

Theorem 0.1 and Assumption 3 then give

‖vk − uk‖H1(Ω) = ‖wk − (wk)k‖H1(Ω) ≤ Chm
k ‖f + ∆Gk‖Hm−1(Ω)

≤ Chm
k

(
‖f‖Hm−1(Ω) + ‖Gk‖Hm+1(Ω)

)
≤ Chm

k

(
‖f‖Hm−1(Ω) + ‖g‖Hm+1/2(∂Ω)

)
.

Hence

(15) ‖vk − uk‖H1(Ω) = ‖wk − (wk)k‖H1(Ω) ≤ Chm
k

(
‖f‖Hm−1(Ω) + ‖g‖Hm+1/2(∂Ω)

)
.

From Equations (14) and (15) we obtain ‖u − uk‖H1(Ω) ≤ Chm
k

(
‖f‖Hm−1(Ω) +

‖g‖Hm+1/2(∂Ω)

)
, which is what we had to prove. �

3. Distributional boundary data and the “inf-sup” condition

Let us consider the Dirichlet problem (13) (i.e., −∆u = f in Ω and u = g on
∂Ω,) with g ∈ H1/2−s(∂Ω) and f ∈ H−1−s(Ω), s ∈ R. If s ≤ 0, it is well known that
the boundary value problem (13) has a unique solution u ∈ H1−s(Ω). Moreover,
there is a constant CΩ,s, depending only on Ω and s ≤ 0, such that

‖u‖H1−s(Ω) ≤ CΩ,s(‖f‖H−1−s(Ω) + ‖g‖H1/2−s(∂Ω)).

In this section, we extend the above result to the case when g ∈ H1/2−s(∂Ω),
with s > 0. Our approach is based on the so called “inf-sup” condition [3].
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3.1. The weak formulation. Let us define the functional space H̃1−s(Ω) :=
H1−s(Ω) ⊕ H−1/2−s(∂Ω). Intuitively, for an element u = (u0, u1) ∈ H̃1−s(Ω),
the first component u0 should be thought of as u in the interior of Ω, while
the second component u1 represents the normal derivative ∂νu on ∂Ω. Let B̃ :
H̃1−s(Ω)×H1+s(Ω) → C be the bilinear functional defined by

B̃(u, v) := 〈u0,∆v〉Ω + 〈u1, v〉∂Ω,

where u = (u0, u1) ∈ H̃1−s(Ω).

Definition 3.1. Let g ∈ H1/2−s(∂Ω) and f ∈ H−1−s(Ω), s ∈ R. We say that
u = (u0, u1) ∈ H̃1−s(Ω) satisfies (13) in weak sense, or that u is a weak solution of
the Dirichlet problem (13), if

(16) B̃(u, v) = −〈f, v〉Ω + 〈g, ∂νv〉∂Ω,

for all v ∈ H1+s(Ω).

Remark 3.2. If u = (u0, u1) ∈ H̃1−s(Ω) is a weak solution of the Dirichlet problem
(13) in the sense of the above definition for s ≤ 0, then it is easy to see that the
first component u0 is a classical solution for (13) and u1 = ∂νu0 on ∂Ω.

Remark 3.3. If u = (u0, u1) ∈ H̃1−s(Ω) is a solution of (13) in weak sense, then it
is unique with this property.

The main ingredient we will use for proving Theorem 0.3 is the following “inf–
sup” lemma (or the Babuška–Brezzi condition) [2, 3]. (This result was used for
similar purposes in [9] in order to deal with low regularity Neumann data.)

Theorem 3.4. Let X and Y be reflexive Banach spaces with norms ‖ · ‖X and
‖ · ‖Y . Also, let B1 : X × Y → C be a bilinear form. Assume that

(a) B1 is continuous;
(b) There exists γ > 0 such that inf‖x‖=1 sup‖y‖≤1 |B1(x, y)| ≥ γ;
(c) sup‖x‖X≤1 |B1(x, y)| > 0 whenever y 6= 0.

Then for any continuous functional F : Y → C there exists a unique x ∈ X such
that F (y) = B1(x, y), for all y ∈ Y . Moreover, we have ‖x‖ ≤ ‖F‖/γ.

We are ready now to prove the main result of this section, that is, Theorem 0.3.

Proof. It is easy to see that B̃ is continuous from its definition and the definition of
negative order Sobolev spaces. Therefore, Condition (a) in Theorem 3.4 is satisfied.
Let u = (u0, u1) ∈ H̃1−s(Ω) be such that ‖u‖ := ‖u0‖H1−s(Ω)+‖u1‖H−1/2−s(∂Ω) = 1.
Since u also belongs to (H−1+s(Ω)⊕H1/2+s(∂Ω))∗, which is the dual of H̃1−s(Ω),
there exists (v, v1) ∈ H−1+s(Ω) ⊕ H1/2+s(∂Ω) with ‖(v, v1)‖ := ‖v‖H−1+s(Ω) +
‖v1‖H1/2+s(∂Ω) = 1 such that

(17) 〈u, (v, v1)〉 := 〈u0, v〉Ω + 〈u1, v1〉∂Ω ≥ 1/2.

Let V ∈ H1+s(Ω) ∩ H1/2+s(∂Ω) be the unique solution of the inhomogeneous
Dirichlet problem

(18)

{
∆V = v in Ω,
V = v1 on ∂Ω.

Then,

(19) B̃(u, V ) = 〈u0,∆V 〉Ω + 〈u1, V 〉∂Ω = 〈u0, v〉Ω + 〈u1, v1〉∂Ω ≥ 1/2,
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and this inequality implies that Condition (b) in Theorem 3.4 is also satisfied.
Finaly, let us check Condition (c) in Theorem 3.4. Let v ∈ H1+s(Ω) such that

B̃(u, v) = 0, for all u = (u0, u1) ∈ H̃1−s(Ω). Then, v must satisfy the Dirichlet
problem

(20)

{
∆v = 0 in Ω,
v = 0 on ∂Ω,

whose unique solution is v = 0. This shows that Condition (c) in Theorem 3.4 is
satisfied as well. The conclusion of the Theorem 0.3 follows if we take the functional
F in Theorem 3.4 to be F (v) := −〈f, v〉Ω + 〈g, ∂νv〉∂Ω. �

Part 2. GFEM Approximation Spaces

4. The Generalized Finite Element Method

Our goal is to construct a sequence Sµ, µ = 1, 2, . . ., of Generalized Finite
Element spaces that satisfy the two assumptions of the previous section. To this
end, we shall introduce a sequence of Generalized Finite Element spaces that satisfy
certain conditions (Conditions A(hµ), B, C, and D). In the following sections we
shall prove that these conditions imply Assumptions 1 and 2.

We begin by recalling a few basic facts about the Generalized Finite Element
Method [4, 8, 26]. This method is quite convenient when one needs test or trial
spaces with high regularity.

4.1. Basic facts. Let k ∈ Z+. We shall denote as usual

|u|W k,∞(Ω) := max
|α|=k

‖∂αu‖L∞(Ω), ‖u‖W k,∞(Ω) := max
|α|≤k

‖∂αu‖L∞(Ω),

W k,∞(Ω) := {u, ‖u‖W k,∞(Ω) < ∞}, and ‖∇ω‖W k,∞(Ω) :=
∑

j ‖∂jω‖W k,∞(Ω). In
particular, |u|W 0,∞(Ω) = ‖u‖W 0,∞(Ω) = ‖u‖L∞(Ω).

We shall need the following slight generalization of a definition from [8, 26]:

Definition 4.1. Let Ω ⊂ Rn be an open set and {ωj}N
j=1 be an open cover of Ω

such that any x ∈ Ω belongs to at most κ of the sets ωj . Also, let {φj} be a partition
of unity consisting of Wm,∞(Ω) functions and subordinated to the covering {ωj}
(i.e., suppφj ⊂ ωj). If

(21) ‖∂αφj‖L∞(Ω) ≤ Ck/(diamωj)k, k = |α| ≤ m,

for any j = 1, . . . , N , then {φj} is called a (κ,C0, C1, . . . , Cm) partition of unity.

Assume also that we are given linear subspaces Ψj ⊂ Hm(ωj), j = 1, 2, . . . , N .
The spaces Ψj will be called local approximation spaces and will be used to define
the space

(22) S = SGFEM :=
{ N∑

j=1

φjvj , vj ∈ Ψj

}
⊂ Hm(Ω),

which will be called the GFEM–space. The set {ωj , φj ,Ψj} will be called the set of
data defining the GFEM–space S. A basic approximation property of the GFEM–
spaces is the following Theorem from [8].
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Theorem 4.2 (Babuška-Melenk). We shall use the notations and definitions of
Definition 4.1 and after. Let {φj} be a (κ,C0, C1) partition of unity. Also, let
vj ∈ Ψj ⊂ H1(ωj), uap :=

∑
j φjvj ∈ S, and dj = diamωj, the diameter of ωj.

Then

(23)

‖u− uap‖2
L2(Ω) ≤ κC2

0

∑
j

‖u− vj‖2
L2(ωj)

and

‖∇(u− uap)‖2
L2(Ω) ≤ 2κ

∑
j

( C2
1‖u− vj‖2

L2(ωj)

(dj)2
+ C2

0‖∇(u− vj)‖2
L2(ωj)

)
.

4.2. Conditions on GFEM data defining Sµ. Recall that ω is star-shaped with
respect to ω∗ ⊂ ω if, for every x ∈ ω and every y ∈ ω∗, the segment with end
points x and y is completely contained in ω. Also, recall that we have fixed an
integer m that plays the role of the order of approximation. Let {ωj , φj ,Ψj}N

j=1

be a single, fixed data defining a GFEM–space S, as in the previous subsection,
and let Σ := {ωj , φj ,Ψj , ω

∗
j }, where ωj is star-shaped with respect to ω∗j ⊂ ωj . We

shall need, in fact, to consider a sequence of such data

(24) Σµ = {ωµ
j , φ

µ
j ,Ψ

µ
j , ω

∗µ
j }Nµ

j=1, µ ∈ N,

defining GFEM–spaces Sµ

(25) Sµ :=
{ Nµ∑

j=1

φµ
j vj , vj ∈ Ψµ

j

}
⊂ Hm(Ω),

such that there exist constants A, Cj , σ, and κ and a sequence hµ → 0, as µ→∞,
for which Σµ satisfies Conditions A(hµ), B, C, and D below for µ ∈ N. The sequence
hµ gives the “typical size” of the elements defining Sµ, as in the first part.

Condition A(hµ). We have that Ω = ∪Nµ

j=1ω
µ
j and for each j = 1, 2, . . . , Nµ, the

set ωµ
j is open of diameter dµ

j ≤ hµ ≤ 1 and ω∗µj ⊂ ωµ
j is an open ball of diameter

≥ σdµ
j such that ωµ

j is star-shaped with respect to ω∗µj .

Notice that we only assume the open covering {ωµ
j } to be nondegenerate, a

weaker condition than quasi-uniformity (see [16], Section 4.4, for definitions and
more information on these notions).

Condition B. The family {φµ
j }

Nµ

j=1 is a (κ,C0, C1, . . . , Cm) partition of unity.

The following condition defines the local approximation spaces Ψµ
j . To formulate

this condition, let us choose xj ∈ ωµ
j ∩ ∂Ω, if the intersection is not empty. We

can assume that linear coordinates have been chosen such that xj = 0 and the
tangent space to ∂Ω at xj is {xn = 0} = Rn−1. For hµ small, we can assume
that ωµ

j ∩ ∂Ω is contained in the graph of a smooth function gµ
j : Rn−1 → R. If

x = (x1, x2, . . . , xn) ∈ Rn, then we shall denote x′ = (x1, x2, . . . , xn−1) ∈ Rn−1, so
that x = (x′, xn). Let qµ

j : Rn−1 → R be a polynomial of order m such that

(26) |gµ
j (x′)− qµ

j (x′)| ≤ C(dµ
j )m+1 and

|∇gµ
j (x′)−∇qµ

j (x′)| ≤ C(dµ
j )m for all (x′, xn) ∈ ωµ

j .
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This condition is satisfied, for instance, if ∂αgµ
j (0) = ∂αqµ

j (0), for all |α| ≤ m. In
this case, the m-degree polynomial qµ

j : Rn−1 → R is uniquely defined by the afore
mentioned requirement.

Next, denote by q̃µ
j : Rn → Rn the bijective map

(27) q̃µ
j (x) = q̃µ

j (x′, xn) = (x′, xn + qµ
j (x′)).

Let us denote by Pk the space of polynomials of order at most k in n variables.

Condition C. We have Ψµ
j = Pm if ωµ

j ∩ ∂Ω = ∅ and, otherwise,

Ψµ
j = {p ◦ (q̃µ

j )−1, p ∈ Pm, such that p(x′, 0) = 0},

where qµ
j are polynomials satisfying Equation (26) with a constant C independent

of j and µ.

An equivalent form of the condition “p ∈ Pm, p(x′, 0) = 0” is “p = xnp1,
p1 ∈ Pm−1,” because any polynomial vanishing on the hyperplane {xn = 0} is
a multiple of xn. Since (q̃µ

j )−1(x′, xn) = (x′, xn − qµ
j (x′)), we obtain p(x′, xn) =

(xn − qµ
j (x′))p1 ◦ (q̃µ

j )−1.

Condition D. We have φµ
j = 1 on ω∗µj for all j = 1, . . . , Nµ for which ωµ

j ∩∂Ω 6= ∅.

The constants Cj , σ, and κ will be called structural constants. Note that we
must have Nµ →∞ as µ→∞.

The above assumptions are slightly weaker than the ones introduced in [9]. For
instance, Condition C implies the following propety (which is similar to Condition
C in [9])

For any w ∈ Ψµ
j , any 0 ≤ l ≤ m+ 1, and any ball ω∗ ⊂ ωµ

j of diameter ≥ σdµ
j .

(28) ‖w‖Hl(ωµ
j ) ≤ C‖w‖Hl(ω∗).

For further applications, we shall also need a variant of the spaces Sµ in which no
boundary conditions are imposed. Recall the functions qµ

j used to define the spaces
Ψµ

j . Let Ψ̃µ
j = Ψµ

j if ωj does not touch the boundary ∂Ω and Ψ̃µ
j = {p◦ (q̃µ

j )−1, p ∈
Pm} otherwise (the difference is that we no longer require p to vanish when xn = 0).
We then define

(29) S̃µ :=
{ Nµ∑

j=1

φµ
j vj , vj ∈ Ψ̃µ

j

}
⊂ Hm(Ω).

We shall also need the following standard lemma, a proof of which, for s ∈ Z+,
can be found in [9]. For s ≥ 0 it is proved by interpolation.

Lemma 4.3. Let ψj be measurable functions defined on an open set W and s ≥ 0.
Assume that there exists an integer κ such that a point x ∈ W can belong to no
more than κ of the sets supp(ψj). Let f =

∑
j ψj. Then there exists a constant

C > 0, depending only on κ, such that ‖f‖2
Hs(W ) ≤ C

∑
j ‖ψj‖2

Hs(W ).

Recall that dµ
j denotes the diameter of ωµ

j . Let us observe that Condition A(hµ)
implies the following inverse inequality.
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Lemma 4.4. There exists C > 0, depending only on σ, such that

(30) ‖p‖Hs(ωµ
j ) ≤ C(dµ

j )r−s‖p‖Hr(ωµ
j ),

for all 0 ≤ r ≤ s ≤ m, all j, all µ, and all polynomials p of order m.

Proof. The proof of this lemma is inspired from the proof of (4.5.3) Lemma of [16].
Consider µ and 1 ≤ j ≤ Nµ arbitrary, but fixed for the moment. Let

ω̂µ
j := { 1

dµ
j

(x− xµ
j ), x ∈ ωµ

j }, ω̂∗µj := { 1
dµ

j

(x− xµ
j ), x ∈ ω∗µj },

where xµ
j is the center of the ball ω∗µj .

If p ∈ Pm is a polynomial of order m, then p̂ is defined by p̂(x̂) := p(dµ
j x̂ + xµ

j )
for all x̂. Observe that the set P̂m := {p̂ : p ∈ Pm} is nothing but the set of all
m-degree polynomials in x̂. Clearly,

(31) |p̂|Hk(ω̂µ
j ) = (dµ

j )k−n/2|p|Hk(ωµ
j ), for 0 ≤ k ≤ m.

We first prove (30) for the case r = 0. Since P̂m is finite dimensional, we have
by the equivalence of norms on the unit ball B(0, 1) that

(32) ‖p̂‖Hk(B(0,1)) ≤ C‖p̂‖L2(B(0,1)), for any 0 ≤ k ≤ m,

where C > 0 is a constant that does not depend on k, j, and µ. From Condition
A(hµ), we obtain that

(33) ‖p̂‖L2(B(0,1)) ≤ C‖p̂‖L2(ω̂∗µ
j )

where C > 0 depends only on the structural constant σ. From (32) and (33), it is
clear that

‖p̂‖Hk(ω̂µ
j ) ≤ C‖p̂‖L2(ω̂µ

j ) ∀p̂ ∈ P̂m,

where C > 0 depends only on σ. Therefore, (31) implies

|p|Hk(ωµ
j )(d

µ
j )k−n/2 ≤ C‖p‖L2(ωµ

j )(d
µ
j )−n/2 for 0 ≤ k ≤ s,

from which we deduce that

|p|Hk(ωµ
j ) ≤ C(dµ

j )−k‖p‖L2(ωµ
j ) for 0 ≤ k ≤ s.

Since dµ
j ≤ hµ ≤ 1, we have

(34) ‖p‖Hs(ωµ
j ) ≤ C(dµ

j )−s‖p‖L2(ωµ
j ),

which is just (30) for r = 0.
Let us now analyse the general case 0 ≤ r ≤ s ≤ m. For |α| = k, with s − r ≤

k ≤ s, Dαp = DβDγp for |β| = s− r and |γ| = k + r − s. Therefore,

‖Dαp‖L2(ωµ
j ) ≤ ‖Dγp‖Hs−r(ωµ

j )

≤ C(dµ
j )r−s‖Dγp‖L2(ωµ

j ) ( by (34))

≤ C(dµ
j )r−s|p|Hk+r−s(ωµ

j ).

Since
|p|Hk(ωµ

j ) :=
∑
|α|=k

‖Dαp‖L2(ωµ
j ),

we obtain that

|p|Hk(ωµ
j ) ≤ C(dµ

j )r−s|p|Hk+r−s(ωµ
j ) for s− r ≤ k ≤ s.
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This implies that

(35) |p|Hk(ωµ
j ) ≤ C(dµ

j )r−s‖p‖Hr(ωµ
j ) for s− r ≤ k ≤ s.

From (34), we also have

(36) ‖p‖Hs−r(ωµ
j ) ≤ C(dµ

j )r−s‖p‖L2(ωµ
j ) ≤ C(dµ

j )r−s‖p‖Hr(ωµ
j ).

Combining (35) and (36) gives (30) and this ends the proof of the lemma. �

5. Properties of the spaces Sµ

In this section, we establish some properties of the GFEM spaces Sµ, µ ∈ N,
defined in Equation (25) using the data Σµ = {ωµ

j , φ
µ
j ,Ψ

µ
j , ω

∗µ
j }Nµ

j=1 satisfying con-
ditions A(hµ), B, C, and D introduced in the previous section for hµ → 0. The
main result is that the sequence Sµ satisfies Assumptions 1 and 2 of the first sec-
tion. Also, we prove that there is a sequence Gk ∈ S̃k of approximate extensions
of g which satisfies Assumption 3 in the case of the non-homogeneous Dirichlet
boundary-value problem (13).

Hereafter, for simplicity, we will omit the index µ whenever its appearance is
implicit.

Let us fix j such that ωj∩∂Ω is not empty. Recall the functions gj , qj : Rn−1 → R
defined in the previous section. So, for h small, ωj∩∂Ω is contained in {(x′, gj(x′))},
the graph of the smooth function gj : Rn−1 → R (this may require a preliminary
rotation, which is not included in the notation, however, for the sake of simplicity).
Let q̃j : Rn → Rn be the bijective map defined by Equation (27). Similarly, let

(37) g̃j(x) = g̃j(x′, xn) = (x′, xn + gj(x′)).

Then g̃j maps Rn−1 to a surface containing ωj ∩ ∂Ω. We have g̃−1
j (x) = (x′, xn −

gj(x′)) and q̃−1
j (x) = (x′, xn − qj(x′)).

We shall need the following estimate.

Lemma 5.1. For any polynomial p of order m, we have

‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖L2(ωj) ≤ Cdm+1
j ‖p‖H1(ωj) and

‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖H1(ωj) ≤ Cdm
j ‖p‖H1(ωj),

where C is a constant independent of p, µ, and j.

Proof. By Taylor’s expansion theorem in the xn variable, we have

p ◦ g̃−1
j (x′, xn) = p(x′, xn − gj(x′)) = p(x′, xn)− gj(x′)∂np(x′, xn) + . . .

+ (−1)k gj(x′)k

k!
∂k

np(x
′, xn) + . . .+ (−1)m gj(x′)m

m!
∂m

n p(x
′, xn)

and

p ◦ q̃−1
j (x′, xn) = p(x′, xn − qj(x′)) = p(x′, xn)− qj(x′)∂np(x′, xn) + . . .

+ (−1)k qj(x
′)k

k!
∂k

np(x
′, xn) + . . .+ (−1)m qj(x′)m

m!
∂m

n p(x
′, xn).
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Then,

|p ◦ g̃−1
j (x′, xn)− p ◦ q̃−1

j (x′, xn)| = |p(x′, xn − gj(x′))− p(x′, xn − qj(x′))|

≤ |gj(x′)− qj(x′)| · |∂np(x′, xn)|+ . . .+ |gj(x′)k − qj(x′)k

k!
| · |∂k

np(x
′, xn)|+ . . .

+ |gj(x′)m − qj(x′)m

m!
| · |∂m

n p(x
′, xn)|.

From this and the Cauchy–Schwartz inequality, we obtain

|p ◦ g̃−1
j (x′, xn)− p ◦ q̃−1

j (x′, xn)|2 = |p(x′, xn − gj(x′))− p(x′, xn − qj(x′))|2

≤ m[(gj(x′)− qj(x′))2∂np(x′, xn)2 + . . .+
(gj(x′)k − qj(x′)k)2

(k!)2
∂k

np(x
′, xn)2 + . . .

+
(gj(x′)m − qj(x′)m)2

(m!)2
∂m

n p(x
′, xn)2].

Notice that |gj(x′)| ≤ dj , for all (x′, xn) ∈ ωj , and because qj(x′) = gj(x′) +
O(dm+1

j ), for all (x′, xn) ∈ ωj , we have(
gj(x′)k−qj(x′)k

)2 = [gk
j (x′)−(gj(x′)+O(dm+1

j ))k]2 ≤ Cd
2(m+k)
j , for k = 1, . . . ,m,

which in turn implies that

|p ◦ g̃−1
j (x′, xn)− p ◦ q̃−1

j (x′, xn)|2 ≤ Cd
2(m+1)
j [∂np(x′, xn)2 + d2

j∂
2
np(x

′, xn)2 + . . .

+ d
2(k−1)
j ∂k

np(x
′, xn)2 + . . .+ d

2(m−1)
j ∂m

n p(x
′, xn)2].

By using the inverse inequality dk−1
j ‖p‖Hk(ωj) ≤ C‖p‖H1(ωj), we get

‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖2
L2(ωj)

=
∫

ωj

|p ◦ g̃−1
j (x′, xn)− p ◦ q̃−1

j (x′, xn)|2dx′dxn

≤ Cd
2(m+1)
j

∫
ωj

[∂np(x′, xn)2 + d2
j∂

2
np(x

′, xn)2 + . . .+ d
2(k−1)
j ∂k

np(x
′, xn)2 + . . .

+ d
2(m−1)
j ∂m

n p(x
′, xn)2]dx′dxn

≤ Cd
2(m+1)
j [‖p‖2

H1(ωj)
+ . . .+ d

2(k−1)
j ‖p‖2

Hk(ωj)
+ . . .+ d

2(m−1)
j ‖p‖2

Hm(ωj)
]

≤ Cd
2(m+1)
j ‖p‖2

H1(ωj)
,

and this completes the proof of ‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖L2(ωj) ≤ Cdm+1
j ‖p‖H1(ωj).

The proof of ‖p◦ g̃−1
j −p◦ q̃−1

j ‖H1(ωj) ≤ Cdm
j ‖p‖H1(ωj) is reduced to the previous

inequality as follows. First, from the inverse inequality dj‖p‖H1(ωj) ≤ C‖p‖L2(ωj),
we obtain

(38) ‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖L2(ωj) ≤ Cdm
j ‖p‖L2(ωj).

It is then enough to show that

(39) ‖∂k(p ◦ g̃−1
j )− ∂k(p ◦ q̃−1

j )‖L2(ωj) ≤ Cdm
j ‖p‖H1(ωj),

for all k = 1, 2, . . . , n.
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The case k = n is easier, so we shall treat only the case when 1 ≤ k ≤ n− 1. A
Taylor expansion with respect to the xn-variable gives

∂k(p ◦ g̃−1
j )(x′, xn) = ∂k(p(x′, xn − gj(x′)))

= (∂kp)(x′, xn − gj(x′))− ∂kgj(x′)(∂np)(x′, xn − gj(x′))

and

∂k(p ◦ q̃−1
j )(x′, xn) = ∂k(p(x′, xn − qj(x′)))

= (∂kp)(x′, xn − qj(x′))− ∂kqj(x′)(∂np)(x′, xn − qj(x′))

Equation (39) then follows from Equation (38) and from the estimates qj(x′) =
gj(x′) + O(dm+1

j ), ∂kqj(x′) = ∂kgj(x′) + O(dm
j ) and |gj(x′)| ≤ dj for (x′, xn) ∈ ωj

(see Equation (26) and Condition C). �

Remark 5.2. Let us observe that Condition A(hµ) was used implicitly in the proof
of Lemma 5.1 when we used the inverse estimates dk−1

j ‖p‖Hk(ωj) ≤ C‖p‖H1(ωj).

Remark 5.3. If (26) is replaced by the more restrictive condition |∂α(gj − qj)| ≤
Cd

m+1−|α|
j , for all |α| ≤ m+1, then the result of the above lemma can be extended

as follows: For any polynomial p of order m, we have

‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖Hs(ωj) ≤ Cdm+1−s
j ‖p‖H1(ωj), s = 0, . . . ,m+ 1,

where C is a constant independent of p, µ, j, and s.

Corollary 5.4. Let p ∈ Pm, then

‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1(ωj) ≤ Cdm

j ‖p‖H1(ωj).

If p ∈ Pm also vanishes on {xn = 0} then we have

‖φj(p ◦ q̃−1
j )‖L2(∂Ω) ≤ Cdm

j ‖p‖H1(ω∗j ).

Here C is a constant independent of p, µ, and j.

Proof. Using Lemma 5.1 and Assumption B, we obtain

‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1(ωj) ≤ ‖φj‖L∞(ωj)‖p ◦ g̃

−1
j − p ◦ q̃−1

j ‖H1(ωj)

+
(
Σn

i=1‖∂iφj‖L∞(ωj)

)
‖p ◦ g̃−1

j − p ◦ q̃−1
j ‖L2(ωj)

≤ Cdm
j ‖p‖H1(ωj) + Cd−1

j dm+1
j ‖p‖H1(ωj) ≤ Cdm

j ‖p‖H1(ωj).

The last part follows from the first part of this corollary, which we have already
proved, and from the fact that φj(p ◦ g̃−1

j ) = 0 on ∂Ω. Indeed,

‖φj(p ◦ q̃−1
j )‖L2(∂Ω) = ‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖L2(∂Ω)

≤ C‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1(Ω) = C‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1(ωj)

≤ Cdm
j ‖p‖H1(ωj) ≤ Cdm

j ‖p‖H1(ω∗j )

The proof is now complete. �

We are ready now to prove that Assumption 1 is satisfied by the sequence of
GFEM–spaces Sµ introduced in Subsection 4.2.

Proposition 5.5. Let Sµ be the sequence of GFEM–spaces defined by data Σµ

(Equation (24)) satisfying conditions A(hµ), B, C, and D. Then the sequence Sµ

satisfies Assumption 1.
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Proof. Let wj ∈ Ψµ
j and w =

∑
φjwj ∈ Sµ. Since we are interested in evaluating w

at ∂Ω, we can assume that only the terms corresponding to j for which ωj ∩∂Ω 6= ∅
appear in the sum. Then wj = pj ◦ q̃−1

j , for some polynomials pj ∈ Pm vanishing
on {xn = 0}. Hence Lemma 4.3 and Corollary 5.4 give

‖w‖2
H1/2(∂Ω) ≤ C

∑
j

‖φjwj‖2
L2(∂Ω) = C

∑
j

‖φj(pj ◦ q̃−1
j )‖2

L2(∂Ω)

≤ C
∑

j

d2m
j ‖pj‖2

H1(ω∗j ) ≤ Ch2m
µ

∑
j

‖pj‖2
H1(ω∗j ) ≤ Ch2m

µ

∑
j

‖wj‖2
H1(ω∗j ).

By Condition D,
∑

j ‖wj‖2
H1(ω∗j ) = ‖w‖2

H1(∪ω∗j ). Therefore,

‖w‖2
L2(∂Ω) ≤ Ch2m

µ ‖w‖2
H1(∪ω∗j ) ≤ Ch2m

µ ‖w‖2
H1(Ω).

Assumption 1 is hence satisfied by taking square roots. �

Remark 5.6. Condition D is only needed in the proof of Proposition 5.5. Although
one can prove that

(40)
∑

j

‖wj‖2
H1(ω∗j ) ≤ C‖w‖2

H1(Ω)

(by using norm equivalence in finite dimensional spaces), one can not bypass Con-
dition D because the constant C in (40) depends on µ. To remove this dependence,
one would have to impose additional and/or different conditions on the partition
of unity.

The proof that the sequence Sµ also satisfies Assumption 2 is also based on
the above lemma and on the following result. Recall that the local approximation
spaces Ψj and Ψ̃µ

j were defined in Subsection 4.2.

Lemma 5.7. Let u ∈ Hm+1(ωj). Then there exists a polynomial w ∈ Ψ̃µ
j such

that ‖u − w‖H1(ωj) ≤ Cdm
j ‖u‖Hm+1(ωj) and ‖u − w‖L2(ωj) ≤ Cdm+1

j ‖u‖Hm+1(ωj)

for a constant C independent of u, µ, and j. If u = 0 on ωj ∩ ∂Ω, then we can
choose w ∈ Ψµ

j .

Proof. We are especially interested in the case when u = 0 on ωj ∩ ∂Ω, so we shall
deal with this case in detail. The other one is proved in exactly the same way.

Let us consider v = u ◦ g̃j . Since g̃j maps Rn−1 = {xn = 0} to a surface
containing ωj ∩ ∂Ω, we obtain that v = 0 on Rn−1. For hµ small enough, we can
assume that g̃−1

j (ωj) lies on one side of Rn−1. Let U be the union of the closure of
g̃−1

j (ωj) and of its symmetric subset with respect to Rn−1. Define v1 ∈ H1(U) to
be the odd extension of v (odd with respect to the reflection about the subspace
Rn−1). Let p1 be the projection of v1 onto the subspace Pm of polynomials of
degree m on U . This projection maps even functions to even functions and odd
functions to odd functions. Hence p1 is also odd. In particular, p1 = 0 on Rn−1.
We also know from standard approximation results [16] that

‖v1 − p1‖H1(U) ≤ Cdm
j ‖v1‖Hm+1(U).

Then

‖u− p1 ◦ g̃−1
j ‖H1(ωj) ≤ C‖v1 − p1‖H1(U) ≤ Cdm

j ‖v1‖Hm+1(U) ≤ Cdm
j ‖u‖Hm+1(ωj).
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Let w = p1 ◦ q̃−1
j . The lemma follows from

‖u− w‖H1(ωj) ≤ ‖u− p1 ◦ g̃−1
j ‖H1(ωj) + ‖p1 ◦ g̃−1

j − p1 ◦ q̃−1
j ‖H1(ωj)

≤ Cdm
j ‖u‖Hm+1(ωj) + Cdm

j ‖p1‖H1(ωj) ≤ Cdm
j ‖u‖Hm+1(ωj),

where we have also used Lemma 5.1.
To prove the relation ‖u − w‖L2(ωj) ≤ Cdm+1

j ‖u‖Hm+1(ωj), we first notice that
Poincaré’s inequality gives

‖v1 − p1‖L2(U) ≤ Cdj‖v1 − p1‖H1(U) ≤ Cdm+1
j ‖v1‖Hm+1(U).

The rest is exactly the same. �

We are ready now to prove Assumption 2. See [4], section 6.1, and [9] for related
results.

Proposition 5.8. The sequence of GFEM spaces Sµ satisfies Assumption 2.

Proof. We proceed as in [9], Theorem 3.2. Let u ∈ Hm+1(Ω). If ωj does not
intersect ∂Ω, we define wj ∈ Ψj = Pm to be the orthogonal projection of u onto Pm

in H1(ωj). Otherwise, we define wj ∈ Ψj using Lemma 5.7. Then let w =
∑

j φjwj .
By using Lemma 5.7, the definition of the local approximation spaces Ψj (Condition
C), and the bounds on ‖∇φj‖L∞ (Condition B), we obtain

|u− w|H1(Ω) =
∣∣ ∑

j

φj(u− wj)
∣∣
H1(Ω)

≤
∑

j

(
‖φj‖L∞ |u− wj |H1(ωj) + ‖∇φj‖L∞‖u− wj‖L2(ωj)

)
≤

∑
j

(
Cdm

j ‖u‖Hm+1(ωj) + Cd−1
j dm+1

j ‖u‖Hm+1(ωj)

)
≤ Cκhm

µ ‖u‖Hm+1(Ω).

This completes the result. �

Next, we will be looking for a sequence Gk of approximate extensions of g in S̃k.
Recall that the spaces S̃k ⊃ Sk were defined in Equation (29) and are variants of
the spaces Sk that are not required to satisfy, even approximately, the boundary
conditions. The construction of such a sequence Gk of approximate extension as
well as the analysis of the resulting method are the main results of this subsection.
Other methods for constructing Gk are certainly possible.

We now check that it is possible to choose Gk ∈ S̃k satisfying Assumption 3. We
follow the method in [3].

Proposition 5.9. There exist continuous linear maps Ik : Hm+1(Ω) → S̃k, such
that

(41) |u− Ik(u)|Hr(Ω) ≤ Chm+1−r
k ‖u‖Hm+1(Ω),

for r = 0 and r = 1.

Proof. For u ∈ Hm+1(Ω) and j fixed, let v = u ◦ g̃j . The Taylor polynomial of
degree m of v averaged over g̃−1(ωj) is given by

(42) Pj(x) := Qm
j v(x) =

∫
g̃−1(ωj)

Qy,v,n(x)Φj(y) dy,
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where

Qy,v,n(x) = v(y)+
n∑

i=1

∂iv(y)(xi−yi)+. . .+
∑
|α|=m

v(α)(y)
α!

(x−y)α, α! = α1! . . . αn!,

is the Taylor polynomial of v at y of degree m and Φj ∈ C∞c (g̃−1(ωj)) is a function
with integral 1. Then, by the Bramble–Hilbert Lemma, we have

(43) |v − Pj |Hs(g̃−1(ωj)) ≤ Chm+1−s
k |v|Hm+1(g̃−1(ωj)), for all 0 ≤ s ≤ m+ 1.

Consider wj := Pj ◦ q̃−1
j ∈ Ψ̃j . Let w :=

∑
j φjwj . Then,

(44) |u− w|2Hr(Ω) ≤ C
∑

j

|φj(u− w)|2Hr(Ω) ≤ C
∑

j

|φj(u− w)|2Hr(ωj)

≤ C
∑

j

r∑
i=0

|φj |2W i,∞(ωj)
|u− wj |2Hr−i(ωj)

≤ C
∑

j

r∑
i=0

|φj |2W i,∞(ωj)
[|u− Pj ◦ g̃−1

j |2Hr−i(ωj)
+ |Pj ◦ g̃−1

j − Pj ◦ q̃−1
j |2Hr−i(ωj)

].

By changing variables and (43), we obtain

(45)
|u− Pj ◦ g̃−1

j |2Hr−i(ωj)
= |v ◦ g̃−1

j − Pj ◦ g̃−1
j |2Hr−i(ωj)

≤ C|v − Pj |2Hr−i(g̃−1
j (ωj))

≤ Ch
2(m+1−r+i)
k |v|2Hm+1(g̃−1(ωj))

= Ch
2(m+1−r+i)
k |u ◦ g̃j |2Hm+1(g̃−1(ωj))

≤ Ch
2(m+1−r+i)
k |u|2Hm+1(ωj)

.

Also, from Lemma 5.1 and the definition (42) of Pj , we have

(46) |Pj ◦ g̃−1
j − Pj ◦ q̃−1

j |2Hr−i(ωj)
≤ Ch

2(m+1−r+i)
k ‖Pj‖2

H1(ωj)

≤ Ch
2(m+1−r+i)
k ‖u‖Hm+1(ωj).

From (44), (45), (46), and Condition B, it follows that

(47)

|u− w|2Hr(Ω) ≤ C
∑

j

r∑
i=0

h−2i
k [h2(m+1−r+i)

k |u|2Hm+1(ωj)
+ h

2(m+1−r+i)
k ‖u‖2

H1(ωj)
]

≤ Ch
2(m+1−r)
k

∑
j

‖u‖2
Hm+1(ωj)

≤ Cκh
2(m+1−r)
k ‖u‖2

Hm+1(Ω),

for all 0 ≤ r ≤ m+ 1.
Define Ik(u) := w. Clearly Ik is a linear map from Hm+1(Ω) to S̃k which satisfies

(41). This ends the proof of the proposition. �

Remark 5.10. If we assume the stronger condition stated in Remark 5.3 on the
m-degree polynomial qj , then the conclusion of Proposition 5.9 is valid for 0 ≤ r ≤
m+ 1 (the proof being exactly the same).

From this proposition we obtain right away the Assumption 3.

Proposition 5.11. For any g ∈ Hm+1/2(∂Ω) there exists a sequence Gk ∈ S̃k

satisfying Assumption 3.
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Proof. Indeed, let us chose G ∈ Hm+1(Ω) that extends g to the interior and
satisfies ‖G‖Hm+1(Ω) ≤ C‖g‖Hm+1/2(∂Ω), with C independent of g. Then choose
Gk = Ik(G), with Ik as in Proposition 5.9. �

6. Interior numerical approximation

In this section, we construct a sequence of approximations uk ∈ S̃k of the solution
u of the distributional boundary value problem ∆u = 0 in Ω, u = g on ∂Ω, with
g ∈ H1/2−s(∂Ω), and we prove interior estimates for the error u−uk. The sequence
of spaces S̃k is the sequence of GFEM spaces constructed in Section 4 and hence it
satisfies the Assumptions 2 and 3, by the results of Section 5. In particular, Sk ⊂ S̃k.
We need to consider GFEM spaces instead of the more general framework of the
first part because we need the interior approximation result of [9] recalled below.

In this section, s ∈ Z+ is fixed. Our results mirror the ones in [9], where the
Neumann problem was considered. The approach is different however, in part be-
cause it is more involved to construct finite element approximations of the solution
u in the case of the Dirichlet boundary conditions.

Our approach is to first approximate g with a sequence Gk of functions. Then
each of the approximate equations ∆vk = 0, vk = Gk at the boundary, is solved
approximately using the results of the previous sections. This yields, for any k, a
sequence (vk)µ with (vk)µ ∈ S̃µ. The sequence of approximations is then uµ :=
(vµ)µ ∈ S̃µ. Our approach is thus similar to that of Section 2.

Recall the spaces S̃µ and Sµ introduced in Assumptions 1, 2, and 3. Let us
also recall that Sµ ⊂ S̃µ. The definition of the space Sµ is slightly different from
the one in [9]; however, the difference is only in the local approximation spaces at
the boundary, and hence this does not affect the spaces S<

µ (Ω) := Sµ ∩ C∞c (Ω).
Therefore, it can be shown that Theorem 3.12 from [9] is still valid. Namely, we
have the following:

Theorem 6.1. Let A b B ⊂ Ω be open subsets. Then there exists C > 0 with the
following property. If u ∈ H1(Ω) and uµ ∈ S̃µ are such that B(u − uµ, χ) = 0 for
all χ ∈ S<

µ (Ω), then for hν small enough,

‖u− uµ‖H1(A) ≤ C
(

inf
χ∈Sµ

‖u− χ‖H1(B) + ‖u− uµ‖H−m(B)

)
.

The constant C depends only on A, B, and the structural constants, but not on
µ ∈ Z+.

This result is the version for the Generalized Finite Element of a basic result
by Nitsche and Schatz [29, Theorem 5.1]. See also [31, Theorem 9.2]. The above
result is the reason why we work in this section in the framework of the Generalized
Finite Element Method and not in the abstract setting of the first part.

Recall that s is fixed in this section. We otherwise use the notation of the
previous sections. We shall need the following property of the spaces S̃j .

• The low regularity approximate extension property: There exists a constant
C > 0 such that, for any g ∈ H1/2−s(∂Ω), we can find a sequence Gj ∈ S̃j

satisfying ‖Gj |∂Ω − g‖H1/2−s−γ(∂Ω) ≤ Chγ
j ‖g‖H1/2−s(∂Ω) for all 0 ≤ γ ≤ m

and ‖Gj‖H1(Ω) ≤ Ch−s
j ‖g‖H1/2−s(∂Ω).
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Lemma 6.2. Assumptions 2 and 3 imply the low regularity approximate exten-
sion property. In particular, the spaces S̃j satisfy the low regularity approximate
extension property.

Proof. Let g ∈ H1/2−s(∂Ω). As in [30], we shall consider for each H > 0 functions
GH ∈ C∞(Ω) such that

‖g −GH‖H1/2−s−γ(∂Ω) ≤ CHγ‖g‖H1/2−s(∂Ω)

‖GH‖H1(Ω) ≤ CH−s‖g‖H1/2−s(∂Ω),

with constants independent of g. On Rn, we can chose GH = χH ∗g, with χH(x) =
H−nχ(x/H) for a suitable chosen χ ∈ C∞c (Rn). In general, this procedure can be
localized as in [15].

Let us then choose H = hj and Gj ∈ S̃j to have the following projection property

B(GH −Gj , χ) = 0, χ ∈ S̃j , and
∫

∂Ω

(GH −Gj)dS(x) = 0.

Then ‖Gj‖H1(Ω) ≤ ‖GH‖H1(Ω) ≤ Ch−s
j ‖g‖H1/2−s(∂Ω). To prove our result, it is

enough to show that the restrictions to the boundary ∂Ω satisfy

(48) ‖Gj −GH‖H1/2−l(∂Ω) ≤ Chl
j‖GH‖H1(Ω),

for any l ≥ 0 (for our result we then take l = s+ γ).
We shall proceed as in [3]. Let w ∈ H l−1/2(∂Ω) with

∫
∂Ω
wdS(x) = 0. We let

W ∈ H l+1(Ω) be the unique solution with mean zero of the Neumann problem
∆W = 0, ∂νW = w. Then ‖W‖Hl+1(Ω) ≤ C‖w‖Hl−1/2(∂Ω) and hence Assumption 2
(approximation property) gives that there exists χ ∈ S̃j such that |W − χ|H1(Ω) ≤
Chl

j‖W‖Hl+1(Ω) ≤ Chl
j‖w‖Hl−1/2(∂Ω). We obtain

‖Gj −GH‖H1/2−l(∂Ω) = sup
w 6=0

〈Gj −GH , w〉∂O
‖w‖Hl−1/2(∂Ω)

= sup
w 6=0

B(Gj −GH ,W − χ)
‖w‖Hl−1/2(∂Ω)

≤ C|Gj −GH |H1(Ω) sup
w 6=0

|W − χ|H1(Ω)

‖w‖Hl−1/2(∂Ω)

≤ Chl
j‖GH‖H1(Ω).

In view of the fact that
∫

∂Ω
(Gj − GH)dS(x) = 0, this proves Equation (48) and

hence completes the proof of the Lemma. �

We are now ready to prove a result on the interior approximation properties for
boundary value problems with low regularity (i.e., distributional) boundary data.

Theorem 6.3. Let Sµ ⊂ S̃µ be our sequences of GFEM spaces. Also, let g ∈
H1/2−s(∂Ω), 1 ≤ s ≤ m−1, A b Ω, and Gj be as in the low regularity approximate
extension property. We define (vj)µ to be the discrete solution of the equation
∆u = 0, u = Gj at the boundary, as defined in Equation (54) and uµ := (vµ)µ.
Then

‖u− uµ‖H1(A) ≤ Chm−s−1
µ ‖g‖H1/2−s(∂Ω).

Proof. We now proceed as in Section 2. Let us denote by wk the solution of

(49) −∆wk = ∆Gk ∈ L2(Ω) in Ω and wk = 0 on ∂Ω,

Then we let vk := wk +Gk, which will satisfy ∆vk = 0 in Ω, vk = Gk on ∂Ω.
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Lemma 6.2 shows that the low regularity approximate extension property is
satisfied. Theorem 0.3 and the low regularity approximate extension property then
give

(50) ‖u− vk‖H1−s−γ(Ω) ≤ C‖g −Gk‖H1/2−s−γ(∂Ω) ≤ Chγ
k‖g‖H1/2−s(∂Ω).

Let B be an open set such that A b B b Ω and t be a parameter. Then for
any harmonic function φ ∈ C∞(Ω), there exists a constant C such that ‖φ‖Ht(B) ≤
C‖φ‖H1−s−γ(Ω). Taking φ := u−vk, t = 1, and using also Equation (50), we obtain

(51) ‖u− vk‖H1(B) ≤ C‖u− vk‖H1−s−γ(Ω) ≤ Chγ
k‖g‖H1/2−s(∂Ω).

By taking φ = vk, we obtain

(52) ‖vk‖Hm+1(B) ≤ C‖vk‖H1−s(Ω) ≤ C‖Gk‖H1/2−s(∂Ω) ≤ C‖g‖H1/2−s(∂Ω).

Also, let us denote by (wk)µ ∈ Sµ the discrete solution of the problem (49) Namely,

(53) B((wk)µ, χ) = (∆Gk, χ), χ ∈ Sµ.

This is nothing but Equation (2) for f = 0. Let

(54) (vk)µ := (wk)µ +Gk.

Then Theorem 1.6 gives

(55) ‖vk − (vk)µ‖H−l(Ω) ≤ Chp+l+1
µ ‖∆Gk‖Hp−1(Ω) ≤ Chp+l+1

µ ‖Gk‖Hp+1(Ω),

for p+ l + 1 ≤ m.
Let us now take p = 0 and l = s + γ − 1, which satisfy s + γ = p + l + 1 ≤ m.

Then

(56) ‖vk − (vk)µ‖H1−s−γ(Ω) ≤ Chs+γ
µ ‖Gk‖H1(Ω) ≤ Chs+γ

µ h−s
k ‖g‖H1/2−s(∂Ω).

In particular, for k = µ, we obtain

(57) ‖vµ − (vµ)µ‖H1−s−γ(Ω) ≤ Chγ
µ‖g‖H1/2−s(∂Ω).

Since B(vµ− (vµ)µ, χ) = B(wµ− (wµ)µ, χ) = 0 for all χ ∈ Sµ, Theorem 6.1 then
gives

(58) ‖vµ − (vµ)µ‖H1(A) ≤ C
(

inf
χ∈Sµ

‖vµ − χ‖H1(B) + ‖vµ − (vµ)µ‖H−m(B)

)
≤ C(hm

µ + hγ
µ)‖g‖H1/2−s(∂Ω) ≤ Chγ

µ‖g‖H1/2−s(∂Ω)

where the last two terms were estimated using Equations (52) and (57).
Equations (51) and (57) give for s+ γ + 1 = m that

‖u− (vµ)µ‖H1(A) ≤ ‖u− vµ‖H1(A) + ‖vµ − (vµ)µ‖H1(A) ≤ Chγ
µ‖g‖H1/2−s(∂Ω)

The proof is complete. �

7. Comments and further problems

In spite of all the differences in assumptions and definitions between [11, 28]
and our paper, the main issue seems to be providing simple examples of spaces
satisfying the various assumptions used in these papers. For instance, it would be
interesting to provide other examples of spaces Sµ satisfying Assumptions 1 and
2. It would also be interesting to see if a modification of the uniform partition of
unity can give, by restriction, spaces Sµ satisfying these Assumptions. Finally, it
would be important to integrate our results with the issues arising from numerical
integration and to provide explicit numerical examples testing our results. In fact,
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related numerical tests together with some theoretical results can be found, for
example, in [5, 20, 30].

7.1. Comments on the approximate boundary conditions. For most of our
results, it is enough to assume

‖vµ‖L2(∂Ω) ≤ Chm
µ ‖vµ‖H1(Ω) for any vµ ∈ Sµ.

However, one then has to replace ‖u‖H1(Ω) with ‖u‖H2(Ω) in Lemmas 1.4 and 1.5.
Also, the proof of Theorem 1.6 for p = 0 requires the full strength of Assumption
1. The case p = 0 is the one needed for the results of Section 6, and that is the
only real reason for which we need the stronger form of Assumption 1.

A related problem is to construct other examples of spaces satisfying the interior
estimates used in Section 6 as well as the general Assumptions 1, 2, and 3. Then
Theorem 6.3 would be valid for these spaces as well.
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